

ASETQU

Page 2 of 20

FOR ASETQU

Date of Report July 19, 2025

Code 0xC69456817C99Efa2d33F4C2408D350fC86138f76

Platform Binance Chain

Website https://www.asetqu.com

Language Solidity

Methodology Automated Review, Unit Tests, Manual Review

Auditor InterFi

⚪ Disclaimer: Smart contracts deployed on blockchains are inherently exposed to potential exploits,

vulnerabilities, and security risks. Blockchain and cryptographic technologies are emerging and carry

ongoing uncertainties. Please review the full audit report for detailed insights into risk severity,

vulnerabilities, and audit scope limitations.

⚪ Centralization Warning: Centralized privileges—regardless of intent or access control—introduce

elevated risks to contract security and user trust.

⚪ KYC Advisory: The project lacks verified third-party KYC of its owners, team, or deployers. Without

independent KYC, transparency and accountability are reduced, increasing the risk of fraud or rug pulls.

⚪ Verification: Verify this report: https://www.github.com/interfinetwork

Page 3 of 20

TABLE OF CONTENTS

FOR ASETQU 1

TABLE OF CONTENTS 3

1. SUMMARY 4
1.1 Summary of Findings 4
1.2 Resolution Status 4
1.3 System Overview 5
1.4 Files in Scope 5
1.5 Out-of-Scope Assumptions 6

2. METHODOLOGY 7
2.1 Audit Objectives 7
2.2 Methodologies 7
2.3 Risk Categorization 8
2.4 Resolution Status Definitions 9

3. FINDINGS 10

4. CENTRALIZATION 14
4.1 Privileged Functions 14

5. DISCLAIMER 17
5.1 Confidentiality 17
5.2 No Financial Advice 17
5.3 Technical Disclaimer 17
5.4 Timeliness & Accuracy 18
5.5 Third-Party Links 18

6. ABOUT 19
6.1 Connect with Us 19

Page 4 of 20

1. SUMMARY
The audit resulted in the identification of issues across a range of severity levels, including logic flaws,

access control oversights, and design inconsistencies. All high-impact findings were communicated to the

development team with clear recommendations for remediation. Where applicable, the team has

confirmed implementation of fixes or provided justifications for design choices.

1.1 Summary of Findings

Severity Count

 1

 1

 0

 1

 2

 1

1.2 Resolution Status

Status Count

! Fixed 1

" Partially Fixed 0

Acknowledged 3

⚪ Pending 2

Critical

Major

Medium

Minor

Unknown

Centralization

Page 5 of 20

1.3 System Overview

This system is a decentralized protocol comprising a suite of smart contracts. These contracts collectively

define the rules, permissions, and operational workflows for managing on-chain assets, executing user

interactions, and enforcing protocol-level logic. Smart contracts in this context are self-executing code

units that autonomously manage the state and behavior of digital assets based on predefined conditions.

The protocol utilizes these contracts to enable key functionalities such as:

§ Ownership and access control enforcement

§ Permission and role-based actions

§ Data storage and updates

§ Event logging and auditability

§ Batch processing and collection management

1.4 Files in Scope

InterFi was engaged by AsetQu to perform a security audit of the smart contracts. The audit scope was

strictly limited to the files explicitly listed under the “Files in Scope” section. No other files or components

were reviewed unless otherwise stated.

File Path Notes

BEP-20: AsetQu
(AsetQu) ERC20Template.sol

https://bscscan.com/token/0xC69456817C99Efa2d33F4C2408D350fC86138f76
https://bscscan.com/token/0xC69456817C99Efa2d33F4C2408D350fC86138f76

Page 6 of 20

1.5 Out-of-Scope Assumptions

The following components and assumptions were explicitly excluded from this audit:

§ Frontend or backend integration logic.

§ Off-chain components, scripts, or oracles.

§ External contracts or libraries unless explicitly stated.

§ Compiler-level or EVM-specific behavior outside the contract’s scope.

§ Governance or tokenomics-related decisions not implemented in code.

§ All third-party dependencies as discussed in findings.

Page 7 of 20

2. METHODOLOGY
2.1 Audit Objectives

This audit aims to ensure that the smart contract system is predictable, and behaves as intended under

normal conditions. Primary audit objectives are to:

§ Identify potential vulnerabilities or logic errors in the implementation.

§ Evaluate adherence to best practices in smart contract development.

§ Assess the correctness of access controls and permission systems.

§ Recommend remediations or enhancements for improved security and performance.

2.2 Methodologies

The audit follows a layered security approach using both automated tools and manual techniques. We

review the contracts for functional correctness, exploitability, and adherence to smart contract best

practices:

Type Tools & Techniques

Manual Code Review Line-by-line analysis to check logic, permissions, and edge cases

Automated Analysis Tools like Slither, MythX, or custom linters to catch known patterns

Static Analysis Identification of bugs without executing the code (compile-time checks)

Unit Test Inspection
Evaluation of existing test coverage, assumptions, and potential false
positives/negatives (if applicable)

Architecture Review
Mapping of privileged roles, callable paths, and contract interdependencies
(if applicable)

Page 8 of 20

2.3 Risk Categorization

Each issue identified during the audit is assigned a severity level based on its potential impact, exploitability,

and likelihood of real-world abuse. These categories help prioritize remediation efforts:

Risk Severity Definition

Represents a severe vulnerability that may result in complete contract compromise,

such as asset theft, permanent loss of functionality, or unrestricted access. These

issues are often easily exploitable and require immediate resolution.

Indicates significant risk that can affect core contract behavior, enable

unauthorized operations, or create unintended financial exposure. While not as

urgent as critical risks, they should be remediated promptly.

These are moderate-level risks that may become exploitable under specific

conditions. They often relate to logic errors, insufficient validation, or architectural

oversights that could escalate over time.

Denotes issues that have low security impact but may degrade code quality,

performance, or maintainability. These include inefficiencies, style violations, or

redundant logic. Fixes are recommended for robustness.

Risks where the severity cannot be confidently determined due to limited context,

external dependencies, or ambiguous design intent. It is advised to treat these

conservatively and address them proactively.

Any function controlled by a single privileged role is treated as a critical risk,

regardless of its purpose, due to the potential for misuse, override, or total asset

control.

Critical

Major

Medium

Minor

Unknown

Centralization

Page 9 of 20

2.4 Resolution Status Definitions

All identified issues are also assigned a resolution status, indicating the current handling and response

from the development team:

Status Definition

! Fixed
The issue has been remediated and verified as resolved during the re-audit
or final check.

" Partially Fixed
The issue has been partially mitigated, but remnants or related concerns
may still exist. Further attention may be required.

Acknowledged
The development team has accepted the finding but opted not to
implement a fix.

⚪ Pending
The issue remains unresolved at the time of publication. It poses a potential
risk and should be addressed.

Page 10 of 20

3. FINDINGS

01 Un-trusted external calls inside _update enable re-entrancy

Severity

Description

registerBlock, registerBlockTimeStamp, noBots, and noWhales all

perform external calls to the anti-bot / anti-whale contracts before any

balance changes are finalized.

A malicious implementation can call back into transfer/transferFrom,

creating re-entrant execution that manipulates balances or tax bookkeeping.

Recommendation
Add nonReentrant to transfer/transferFrom or move all external calls

after internal state mutations.

Status # Acknowledged

 Import from OpenZeppelin

Critical

Page 11 of 20

02 Hard external dependency > Total token freeze

Severity

Description

Every transfer must succeed in both anti-bot and anti-whale calls. If either

address:

§ is the zero address,

§ points to a self-destructed / non-code address, or

§ reverts due to upgrade, all transfers revert, permanently freezing the token.

Recommendation Emit an emergency switch to bypass the external services

Status # Acknowledged

 Used SmithiiTools to develop

Unknown

Page 12 of 20

03 Redundant Imports

Severity

Description

Two import statements compile files that the Solidity compiler is already going to

pull in transitively through other OpenZeppelin modules, so they are superfluous:

@openzeppelin/contracts/token/ERC20/extensions/ERC20Burnable.sol

@openzeppelin/contracts/token/ERC20/extensions/ERC20Burnable.sol

@openzeppelin/contracts/utils/Pausable.sol

Redundant imports cost deployment gas and complicate auditing by adding

noise.

Recommendation Remove unused imports if not needed explicitly.

Status # Acknowledged

 Imports from OpenZeppelin

Minor

Page 13 of 20

04 Third Party Dependencies & Trust Assumptions

Severity

Description

Smart contract imports and uses packages from:

@openzeppelin/contracts/token/ERC20/ERC20.sol

@openzeppelin/contracts/access/Ownable.sol

@openzeppelin/contracts/token/ERC20/extensions/ERC20Burnable.sol

@openzeppelin/contracts/utils/Pausable.sol

Undefined Behaviour from External Libraries – Any latent bug or future

vulnerability in these OpenZeppelin contracts (for example in Pausab;e or

ERC20Burnable) propagates directly to AsetQu.

No Pinned Hash Verification – Without locking dependencies to exact commit

hashes, npm/pnpm updates can silently pull newer code, breaking reproducibility

and invalidating this audit.

Recommendation
Lock OpenZeppelin dependencies to specific commit hashes or audited releases.

Use consistent versioning (e.g., use only v4.9.6 or v5.0.0, not mixed).

Status ⚪ Pending

Unknown

Page 14 of 20

4. CENTRALIZATION
Centralization is one of the leading causes of smart contract-related asset losses. When a contract assigns

critical powers to a privileged role—such as an owner, admin, or designated controller—the associated

risk becomes elevated, especially if that role is tied to a single externally owned account (EOA). In many

cases, privileged roles serve operational or safety functions, including:

§ Emergency Controls: Ability to pause() the contract during active threats or bugs.

§ Contract Configuration: Updating key addresses, thresholds, or operational variables post-

deployment.

4.1 Noteworthy Privileged Functions

onlyOwner

setNotTaxable(address,bool)

setBlackList(address,bool)

setTaxAddress(address)

releaseAirdropMode()

releaseAntibotGlobalExemption(address)

releaseAntiwhaleGlobalExemption(address)

transferOwnership(address)

renounceOwnership()

Page 15 of 20

01 Centralization, Access Controls, Privileged Roles

Severity

Description

A single EOA with control can be compromised via phishing, private key

leakage, or insider threats. Malicious or negligent use of privileges can lead to

- token supply manipulation, disruption of trading via pausing, arbitrary fee

changes or wallet exclusions, asset seizures or rerouting, etc.

4.1 Privileged Functions

Recommendation

Using Multi-Signature Wallets: Assign privileged roles to a multi-sig contract

requiring signatures from multiple trusted parties. This reduces the impact of

any single compromised key.

Time-Locked Functions: Introduce delays before executing sensitive

operations, allowing time for community review or cancellation.

Role Revocation or Transfer: If privileges are no longer needed post-

deployment, renounce them or migrate them to DAO governance.

Secure Key Management: Any private keys associated with privileged roles

must be protected using hardware wallets, secret sharing schemes, or offline

signing protocols.

Status ! Fixed

 Ownership renounced

Centralization

Page 16 of 20

02 Centralized Mint Allocation / Questionable Holder Allocation

Severity

Description

Entire supply is minted to msg.sender during contract deployment. This

hardcodes full token control to the deployer at genesis. Multiple holders with

5%+ supply.

This creates a centralization risk, allowing addresses to:

§ Dump or manipulate supply

§ Withhold tokens from the market

§ Mislead users into thinking the token is fairly launched or distributed

Recommendation
Implement vesting, time locks, or controlled distribution logic to mitigate

single-party control.

Status ⚪ Pending

Major

Page 17 of 20

5. DISCLAIMER
InterFi Network provides professional smart contract audits for blockchain-based codebases (commonly

known as smart contracts). This audit assessed the reviewed contract(s) for common vulnerabilities,

centralization risks, and logic flaws. However, no audit can guarantee the complete absence of bugs or

vulnerabilities. This report does not constitute a security guarantee, endorsement, or assurance of business

model soundness or legal compliance.

The review is limited strictly to the source code and its logic as provided, and does not extend to compiler

behavior, off-chain components, or external integrations. Due to the evolving nature of blockchain

technology and associated risks, users should understand that all materials, including this audit report, are

provided strictly on an “as is”, “as available”, and “with all faults” basis.

5.1 Confidentiality

This report is confidential and intended solely for the client. It may not be disclosed, reproduced, or relied

upon by third parties without prior written consent from InterFi Network. All terms, including confidentiality,

liability limitations, and scope, are governed by the audit agreement.

5.2 No Financial Advice

This report is not financial, investment, tax, legal, or regulatory advice. It should not be relied upon for

making investment decisions or assessing the value, viability, or safety of any token, product, or platform.

No part of this document should be interpreted as an endorsement or recommendation. InterFi Network

accepts no liability for any actions taken based on this report.

5.3 Technical Disclaimer

InterFi disclaims all warranties—express, implied, or statutory—including merchantability, fitness for a

particular purpose, title, and non-infringement. We do not guarantee that the reviewed contracts are

error-free, fully secure, or meet any specific requirements. Audit results may contain false positives or

negatives, and findings are subject to the context and limitations of the review scope.

Page 18 of 20

5.4 Timeliness & Accuracy

Audit results reflect the state of the code at the time of review. InterFi makes no commitment to update

findings after publication. We do not warrant the accuracy, completeness, or timeliness of information

delivered via this report.

5.5 Third-Party Links

This report may contain references or links to external websites and social media accounts. InterFi Network

is not responsible for the content or operation of third-party platforms and assumes no liability for actions

taken based on their content.

Page 19 of 20

6. ABOUT
InterFi Network is a leading provider of intelligent blockchain solutions, offering secure, scalable, and

production-ready smart contract services. Our team specializes in the development, testing, and auditing

of smart contracts across a wide range of blockchain ecosystems.

We have delivered:

§ 300+ smart contract systems developed

§ 2,000+ smart contracts audited

§ 500,000+ lines of code reviewed and analyzed

Our technical expertise spans multiple languages including:

§ Solidity for EVM-compatible chains (Ethereum, BNB Chain, Polygon, Avalanche, Cronos,

Fantom, Velas, Metis, and more)

§ Move for next-generation platforms such as Sui and Aptos

§ Rust for advanced ecosystems like Solana, Near, and Cosmos SDK-based chains

6.1 Connect with Us

InterFi Network is driven by a multidisciplinary team of engineers, developers, UI/UX specialists, and

blockchain researchers. The core team consists of 3 senior members supported by 4+ expert contributors

across code auditing, tooling, and protocol design.

§ Website: interfi.network

§ Email: hello@interfi.network

§ GitHub: github.com/interfinetwork

§ Telegram (Engineering): @interfiaudits

§ Telegram (Onboarding): @interfisupport

https://interfi.network/
https://github.com/interfinetwork
https://t.me/interfiaudits
https://t.me/interfisupport

Page 20 of 20

